SUMMARY

A clear understanding of nerve regeneration through conduits and the inherent limitations is essential in considering treatment options. Conduits offer advantages, including off-the-shelf availability, alleviation of tension9,10, and reduced potential for fascicular mismatch.11,12 They can be effective at short gaps (typically 5mm or less). However, there is a higher risk of conduit failure as gap length increases due to reliance upon the fibrin cable.7,9,11,12

Clinical studies have shown that gaps greater than 5mm have:
- High failure rates
- Limited pain resolution
- High revision rates

The strengths and limitations of conduits should be considered when evaluating treatment options for peripheral nerve injuries.

REFERENCES

AXOGEN’S SOLUTIONS FOR REPAIRING NERVE GAPS.

Designed for more reliable results:
- Unique length for bridging gaps up to 5mm
- Semi-translucent for visualization of the nerve

Provides multi-tubular structure:
- Decellularized nerve allograft with preserved extracellular matrix
- Clean and clear pathways allow axon growth

To Place an Order, Contact:
AxoGen Customer Service
Phone: 888-AXOGEN1 (888-296-4361)
Fax: 888-462-8601
Email: customerservice@axogeninc.com
www.axogeninc.com

AxoGuard® Manufactured by:
Axogen, Inc.
1425 Innovation Place
West Lafayette, Indiana 47906 U.S.A.
Phone: 765-497-3355
Fax: 765-497-2361
www.axogeninc.com

©2010 Axogen, Inc. Avance®, AxoGuard® Nerve Protector and AxoGuard® Nerve Connector are trademarks of Axogen, Inc.
HOW NERVE CONDUICTS WORK.
Peripheral nerves have the ability to effectively regenerate if given the proper environment. Autografts and allografts provide a multitudinal internal structure and scaffolding that supports and physically guides axonal regeneration. However, nerve conduits are hollow and provide only gross guidance. Regeneration through a conduit relies on the formation of a fibrin cable. This rudimentary structure, not the conduit itself, is what provides the physical support that makes regeneration possible. The process is shown below:

THE LENGTH LIMITATION OF CONDUICTS.
Regeneration within a conduit occurs predominantly through the fibrin cable. The integrity of the fibrin cable is a function of the conduit dimensions. The illustrations below demonstrate what happens as the length of the gap increases.

CLINICAL OUTCOMES WITH CONDUICTS.
Landmark clinical studies have examined the efficacy of commercially available conduits. As summarized below, results in gaps ranging from 0-5mm demonstrate that conduits can be a successful nerve repair option. Results using conduits in gaps greater than 5mm are highly variable and less reliable.

<table>
<thead>
<tr>
<th>Type of Nerve</th>
<th>Gap Length</th>
<th>% Failure*</th>
<th>Other Findings</th>
<th>Clinical Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>0-4 mm</td>
<td>0%</td>
<td>34% failure rate in gaps 5mm or greater</td>
<td>Weber et al., 2000</td>
</tr>
<tr>
<td></td>
<td>5-7 mm</td>
<td>39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-25 mm</td>
<td>29%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>6-18 mm</td>
<td>25%</td>
<td>100% of gaps > 16mm failed</td>
<td>Lohmeyer et al., 2009</td>
</tr>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>5-30 mm</td>
<td>14%</td>
<td>27% reported poor resolution of pain</td>
<td>Mackinnon and Delton, 1990</td>
</tr>
<tr>
<td>Sensory, Mixed and Motor Nerves**</td>
<td>2.5-20 mm</td>
<td>57%</td>
<td>31% required revision***</td>
<td>Wangenstein and Kallainen, 2008</td>
</tr>
</tbody>
</table>

*No or poor sensory recovery as defined by the MRCC scale
**Mostly sensory nerves in the upper extremity, but also includes mixed and motor nerves elsewhere in the body
***When quantitative measurements were made

CLINICAL EXAMPLE
Referred patient where multiple conduits failed in 18mm gaps.

CLINICAL EXAMPLE
Sensory nerve assessment of 2 point discrimination.
HOW NERVE CONDUITS WORK.

Peripheral nerves have the ability to effectively regenerate if given the proper environment. Autografts and allografts provide a multitudinous internal structure and scaffolding that supports and physically guides axonal regeneration. However, nerve conduits are hollow and provide only gross guidance. Regeneration through a conduit relies on the formation of a fibrin cable. This rudimentary structure, not the conduit itself, is what provides the physical support that makes regeneration possible. The process is shown below:

THE LENGTH LIMITATION OF CONDUITS.

Regeneration within a conduit occurs predominantly through the fibrin cable. The integrity of the fibrin cable is a function of the conduit dimensions. The illustrations below demonstrate what happens as the length of the gap increases.

At short gap lengths, the fibrin cable is robust enough to allow regeneration.

As the gap length increases, the integrity of the fibrin cable diminishes and thinning restricts the regenerative space.

If the cable does not form, axons are not able to cross the gap. This results in no regeneration or possibly a neuroma.

CLINICAL OUTCOMES WITH CONDUITS.

Landmark clinical studies have examined the efficacy of commercially available conduits. As summarized below, results in gaps ranging from 0-5mm demonstrate that conduits can be a successful nerve repair option. Results using conduits in gaps greater than 5mm are highly variable and less reliable.

<table>
<thead>
<tr>
<th>Type of Nerve</th>
<th>Gap Length</th>
<th>% Failure*</th>
<th>Other Findings</th>
<th>Clinical Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>0-4 mm</td>
<td>0%</td>
<td>34% failure rate in gaps 5mm or greater</td>
<td>Weber et al., 2000</td>
</tr>
<tr>
<td></td>
<td>5-7 mm</td>
<td>38%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-25 mm</td>
<td>29%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>6-18 mm</td>
<td>25%</td>
<td>100% of gaps > 16mm failed</td>
<td>Lohmeyer et al., 2009</td>
</tr>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>5-30 mm</td>
<td>14%</td>
<td>27% reported poor resolution of pain</td>
<td>Mackinnon and Delton, 1990</td>
</tr>
<tr>
<td>Sensory, Mixed and Motor Nerves**</td>
<td>2.5-20 mm</td>
<td>57%</td>
<td>31% required revision***</td>
<td>Wangensteen and Kalliainen, 2009</td>
</tr>
</tbody>
</table>

*No or poor sensory recovery as defined by the MRCC scale
**Mostly sensory nerves in the upper extremity, but also includes mixed and motor nerves elsewhere in the body
***When quantitative measurements were made

CLINICAL EXAMPLE

Sensory nerve assessment of 2 point discrimination.

CLINICAL EXAMPLE

Refereed patient where multiple conduits failed in 18mm gaps.

- Denotes thinned atrophic nerve tissue.
- Denotes loss of integrity and neuroma formation.

Image courtesy of Bauback Safa, MD

The Buncke Clinic

Image courtesy of Jonathan Issacs, MD

Virginia Commonwealth University Health System

HOUSRS
Fluid seeps from the nerve ends into the void of the conduit.

DAYS
An hourglass-shaped fibrin cable forms. The regeneration potential is dependent upon the presence, integrity, and cross-sectional area of this fibrin cable.

MONTHS
Cell migration and axonal regeneration occurs within the cable and is restricted by the thinnest portion.

YEARS
Often the resulting tissue is visibly thinner, containing a limited number of regenerated axons.

CLINICAL EXAMPLE

A thinning nerve cable seen in a 10mm gap previously repaired with a conduit.

Image courtesy of Jonathan Issacs, MD

Virginia Commonwealth University Health System

CLINICAL EXAMPLE

Referred patient where multiple conduits failed in 18mm gaps.

- Denotes thinned atrophic nerve tissue.
- Denotes loss of integrity and neuroma formation.

Image courtesy of Bauback Safa, MD

The Buncke Clinic

Image courtesy of Jonathan Issacs, MD

Virginia Commonwealth University Health System

CLINICAL EXAMPLE

Sensory nerve assessment of 2 point discrimination.
HOW NERVE CONDUICTS WORK.

Peripheral nerves have the ability to effectively regenerate if given the proper environment. Autografts and allografts provide a multitudinal internal structure and scaffolding that supports and physically guides axonal regeneration. However, nerve conduits are hollow and provide only gross guidance. Regeneration through a conduit relies on the formation of a fibrin cable. This rudimentary structure, not the conduit itself, is what provides the physical support that makes regeneration possible. The process is shown below:

THE LENGTH LIMITATION OF CONDUICTS.

Regeneration within a conduit occurs predominantly through the fibrin cable. The integrity of the fibrin cable is a function of the conduit dimensions. The illustrations below demonstrate what happens as the length of the gap increases.

CLINICAL OUTCOMES WITH CONDUICTS.

Landmark clinical studies have examined the efficacy of commercially available conduits. As summarized below, results in gaps ranging from 0-5mm demonstrate that conduits can be a successful nerve repair option. Results using conduits in gaps greater than 5mm are highly variable and less reliable.

<table>
<thead>
<tr>
<th>Type of Nerve</th>
<th>Gap Length</th>
<th>% Failure</th>
<th>Other Findings</th>
<th>Clinical Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>0-4 mm</td>
<td>0%</td>
<td>34% failure rate in gaps 5mm or greater</td>
<td>Weber et al., 2000</td>
</tr>
<tr>
<td></td>
<td>5-7 mm</td>
<td>39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-25 mm</td>
<td>29%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>6-18 mm</td>
<td>25%</td>
<td>100% of gaps > 16mm failed</td>
<td>Lohmeyer et al., 2009</td>
</tr>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>5-30 mm</td>
<td>14%</td>
<td>27% reported poor resolution of pain</td>
<td>Mackinnon and Detlof, 1990</td>
</tr>
<tr>
<td>Sensory, Mixed and Motor Nerves**</td>
<td>2.5-20 mm</td>
<td>57%</td>
<td>31% required revision***</td>
<td>Wangensteen and Kalliainen, 2008</td>
</tr>
</tbody>
</table>

*No or poor sensory recovery as defined by the MNRC scale.
**Mostly sensory nerves in the upper extremity, but also includes mixed and motor nerves elsewhere in the body.
***When quantitative measurements were made.

CLINICAL EXAMPLE

Referred patient where multiple conduits failed in 18mm gaps.

CLINICAL EXAMPLE

Sensory nerve assessment of 2 point discrimination.

At short gap lengths, the fibrin cable is robust enough to allow regeneration.

As the gap length increases, the integrity of the fibrin cable diminishes and thinnens restricting the regenerative space.

If the cable does not form, axons are not able to cross the gap. This results in no regeneration or possibly a neuroma.

CLINICAL EXAMPLE

A thinning nerve cable seen in a 10mm gap previously repaired with a conduit.

Image courtesy of Jonathan Isaacs, MD
Virginia Commonwealth University Health System

Image courtesy of Bauback Safa, MD
The Buncke Clinic

Image courtesy of Rambach Skafe, MD
The Buncke Clinic

*AxoGen. Peripheral nerves have the ability to effectively regenerate if given the proper environment. Autografts and allografts provide a multitudinal internal structure and scaffolding that supports and physically guides axonal regeneration. However, nerve conduits are hollow and provide only gross guidance. Regeneration through a conduit relies on the formation of a fibrin cable. This rudimentary structure, not the conduit itself, is what provides the physical support that makes regeneration possible. The process is shown below:

The length limitation of conduits.

Regeneration within a conduit occurs predominantly through the fibrin cable. The integrity of the fibrin cable is a function of the conduit dimensions. The illustrations below demonstrate what happens as the length of the gap increases.

Clinical outcomes with conduits.

Landmark clinical studies have examined the efficacy of commercially available conduits. As summarized below, results in gaps ranging from 0-5mm demonstrate that conduits can be a successful nerve repair option. Results using conduits in gaps greater than 5mm are highly variable and less reliable.

<table>
<thead>
<tr>
<th>Type of Nerve</th>
<th>Gap Length</th>
<th>% Failure</th>
<th>Other Findings</th>
<th>Clinical Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>0-4 mm</td>
<td>0%</td>
<td>34% failure rate in gaps 5mm or greater</td>
<td>Weber et al., 2000</td>
</tr>
<tr>
<td></td>
<td>5-7 mm</td>
<td>39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-25 mm</td>
<td>29%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>6-18 mm</td>
<td>25%</td>
<td>100% of gaps > 16mm failed</td>
<td>Lohmeyer et al., 2009</td>
</tr>
<tr>
<td>Digital Nerves (Sensory)</td>
<td>5-30 mm</td>
<td>14%</td>
<td>27% reported poor resolution of pain</td>
<td>Mackinnon and Detlof, 1990</td>
</tr>
<tr>
<td>Sensory, Mixed and Motor Nerves**</td>
<td>2.5-20 mm</td>
<td>57%</td>
<td>31% required revision***</td>
<td>Wangensteen and Kalliainen, 2008</td>
</tr>
</tbody>
</table>

*No or poor sensory recovery as defined by the MNRC scale.
**Mostly sensory nerves in the upper extremity, but also includes mixed and motor nerves elsewhere in the body.
***When quantitative measurements were made.

Clinical example

Referred patient where multiple conduits failed in 18mm gaps.

Clinical example

Sensory nerve assessment of 2 point discrimination.

At short gap lengths, the fibrin cable is robust enough to allow regeneration.

As the gap length increases, the integrity of the fibrin cable diminishes and thinnens restricting the regenerative space.

If the cable does not form, axons are not able to cross the gap. This results in no regeneration or possibly a neuroma.

Clinical example

A thinning nerve cable seen in a 10mm gap previously repaired with a conduit.

Image courtesy of Jonathan Isaacs, MD
Virginia Commonwealth University Health System

Image courtesy of Bauback Safa, MD
The Buncke Clinic

Image courtesy of Rambach Skafe, MD
The Buncke Clinic
SUMMARY

A clear understanding of nerve regeneration through conduits and the inherent limitations is essential in considering treatment options. Conduits offer advantages, including off-the-shelf availability, alleviation of tension, and reduced potential for fascicular mismatch. They can be effective at short gaps (typically 5mm or less). However, there is a higher risk of conduit failure as gap length increases due to reliance upon the fibrin cable. Clinical studies have shown that gaps greater than 5mm have:

- High failure rates
- Limited pain resolution
- High revision rates

The strengths and limitations of conduits should be considered when evaluating treatment options for peripheral nerve injuries.

REFERENCES

14. To Place an Order, Contact:
Axeo Gen Customer Service Phone: 888-AXOGEN1 (888-296-4361) Fax: 888-462-8801 Email: customerservice@axogeninc.com www.axogeninc.com
AxoGuard® Manufactured By:
Cook Biotech Incorporated 1425 Innovation Place West Lafayette, Indiana -47906 U.S.A. Phone: 765-497-3555 Toll Free: 888-399-2361 Fax: 765-497-2361

AxoGen®
To Place an Order, Contact: AxoGen Customer Service Phone: 888-AXOGEN1 (888-296-4361) Fax: 888-462-8801 Email: customerservice@axogeninc.com www.axogeninc.com
AxoGuard® Manufactured By: Cook Biotech Incorporated 1425 Innovation Place West Lafayette, Indiana -47906 U.S.A. Phone: 765-497-3555 Toll Free: 888-399-2361 Fax: 765-497-2361

Understanding Nerve Conduits
SUMMARY

A clear understanding of nerve regeneration through conduits and the inherent limitations is essential in considering treatment options. Conduits offer advantages, including off-the-shelf availability, alleviation of tension, and reduced potential for fascicular mismatch. They can be effective at short gaps (typically 5mm or less). However, there is a higher risk of conduit failure as gap length increases due to reliance upon the fibrin cable. Clinical studies have shown that gaps greater than 5mm have:

- High failure rates
- Limited pain resolution
- High revision rates

The strengths and limitations of conduits should be considered when evaluating treatment options for peripheral nerve injuries.

REFERENCES

To Place an Order, Contact:
AxoGen Customer Service
Phone: 888-AXOGEN1 (888-296-4361)
Fax: 866-462-6581
Email: customerservice@axogeninc.com
www.axogeninc.com
AxeGuard® Manufactured By:
Cook Biotech Incorporated
1425 Innovation Place
West Lafayette, Indiana - 47906 U.S.A.
Phone: 765-497-3355
Toll Free: 888-359-2961
Fax: 765-497-2961

Axogen’s Solutions for Repairing Nerve Gaps.

Designed for more reliable results:
- Unique length for bridging gaps up to 5mm
- Semi-transparent for visualization of the nerve

Provides multi-tubular structure:
- Decellularized nerve allograft with preserved extracellular matrix
- Clean and clear pathways allow axon growth

Axoguard®
Manufactured by:
Cook Biotech Incorporated
1425 Innovation Place
West Lafayette, Indiana - 47906 U.S.A.
Phone: 765-497-3355
Toll Free: 888-359-2961
Fax: 765-497-2961

Axoguard® Nerve Protector and Axoguard® Nerve Connector and their logos are trademarks of Axogen, Inc.